# BIO495 Capstone

Nick Zeltt



### Central Dogma







# Coupling

- Cellular processes occur concurrently
  - Ex. Cotranscriptional Splicing
- Coupling is the biological concept that independent cellular processes are linked using similar cellular resources in order to allow for more efficient utilization of energy
  - Enzymes often have multiple roles in different cellular processes
- Analogous to buying a multitool for multiple purposes versus buying seperate tools for each job





## An Example of Coupling: Cotranscriptional Splicing



- Though often described sequentially, transcription and RNA splicing occur at the same time
  - Splicing machinery is known to load onto the growing premRNA strand before the termination of transcription
- The Carboxyl Terminal Domain (CTD) of RNA Polymerase II (the main driver of transcription) is known to recruit splicing machinery
- This is a well known phenomenon; however, our lab was interesting in studying how **chromatin modification** (a precursor to transcription) and **3' end processing**could also be coupled to RNA splicing in this way.



#### **Chromatin Modification**



- For transcription to occur, DNA must be accessible for RNA Polymerase II to bind and transcribe DNA into mRNA
- 2 classes of proteins that achieve this
  - Chromatin Remodeling Proteins physically removes histones from DNA
  - Chromatin Modifying Proteins chemically modifies amino acid residues to change the bonds of DNA to the histones
    - Subtypes include histone acetlyases (Nua4 Complex), methylases and phosphorylases.



# Splicing

- Splicing- the process of removing noncoding introns of pre-mRNA and retaining coding exons
  - Occurs cotranscriptionally
  - Alternative Splicing- mRNAs can be spliced in different ways by selectively retaining or removing introns to create different protein products.
- Accomplished through splicing factors associated in a complex known as the spliceosome:
  - The main drivers the snRNPs (U1, U2, U4/U5/U6
  - Helped by helicases (Prp28, Prp40, NTC)



## The Models on the Effects on Splicing

- There are two models that couple how the qualities of transcriptions can affect the effectiveness of splicing
  - a. Kinetic Model the speed of transcription (the speed at which RNA Pol II moves) changes splicing
    - Faster transcription reduces the quality of splicing
    - Slower transcription increases the quality of splicing
  - Recruitment Model proteins involved in transcription actively recruit proteins involved in splicing





#### Single Mutant Qualitative Growth Assays

YPD 30°C

YPD 33°C





| Elongation Restrictions on Single Mutants |               |  |   |      |    |     |              |  |   |   |   |  |             |  |  |  |  |  |
|-------------------------------------------|---------------|--|---|------|----|-----|--------------|--|---|---|---|--|-------------|--|--|--|--|--|
|                                           | Complete 33°C |  |   |      |    |     | 100 6AU 33°C |  |   |   |   |  | 200 6AU 33° |  |  |  |  |  |
| WT                                        |               |  | ۲ | 6    | 1  | 1.5 |              |  |   |   |   |  |             |  |  |  |  |  |
| esa1-254                                  |               |  |   |      |    |     |              |  |   |   |   |  |             |  |  |  |  |  |
| hsh155                                    | ÷             |  |   |      |    |     |              |  |   |   |   |  |             |  |  |  |  |  |
| rna14∆                                    |               |  |   |      |    |     |              |  |   |   |   |  |             |  |  |  |  |  |
| eaf3∆                                     | ۲             |  | - | 26.0 | *  |     |              |  | - | 1 | 2 |  |             |  |  |  |  |  |
| eaf7∆                                     |               |  |   | 覅    | 23 |     |              |  |   |   |   |  |             |  |  |  |  |  |
| htz1∆                                     |               |  | - | £3   |    | *   |              |  |   |   |   |  |             |  |  |  |  |  |

