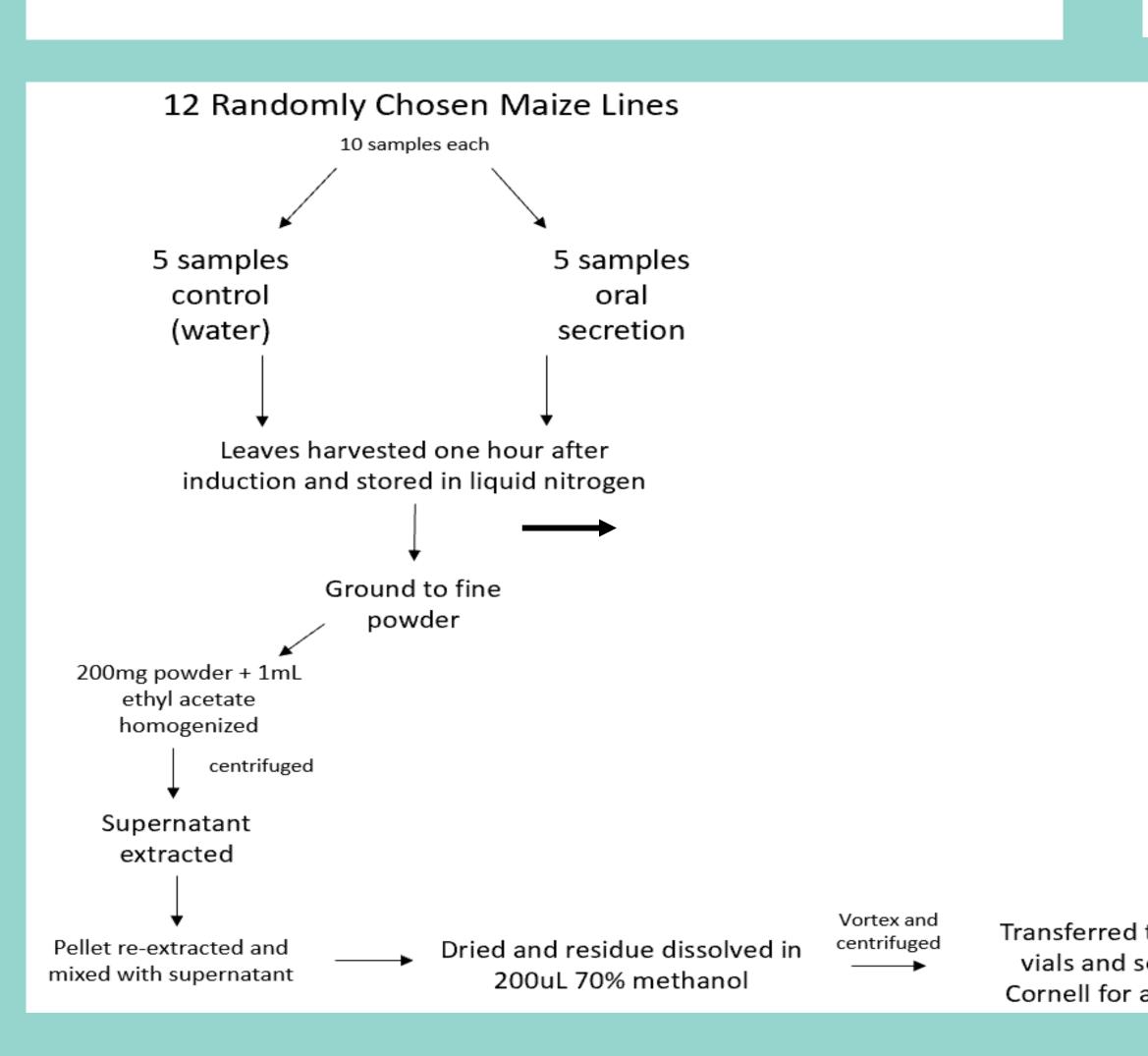


Background

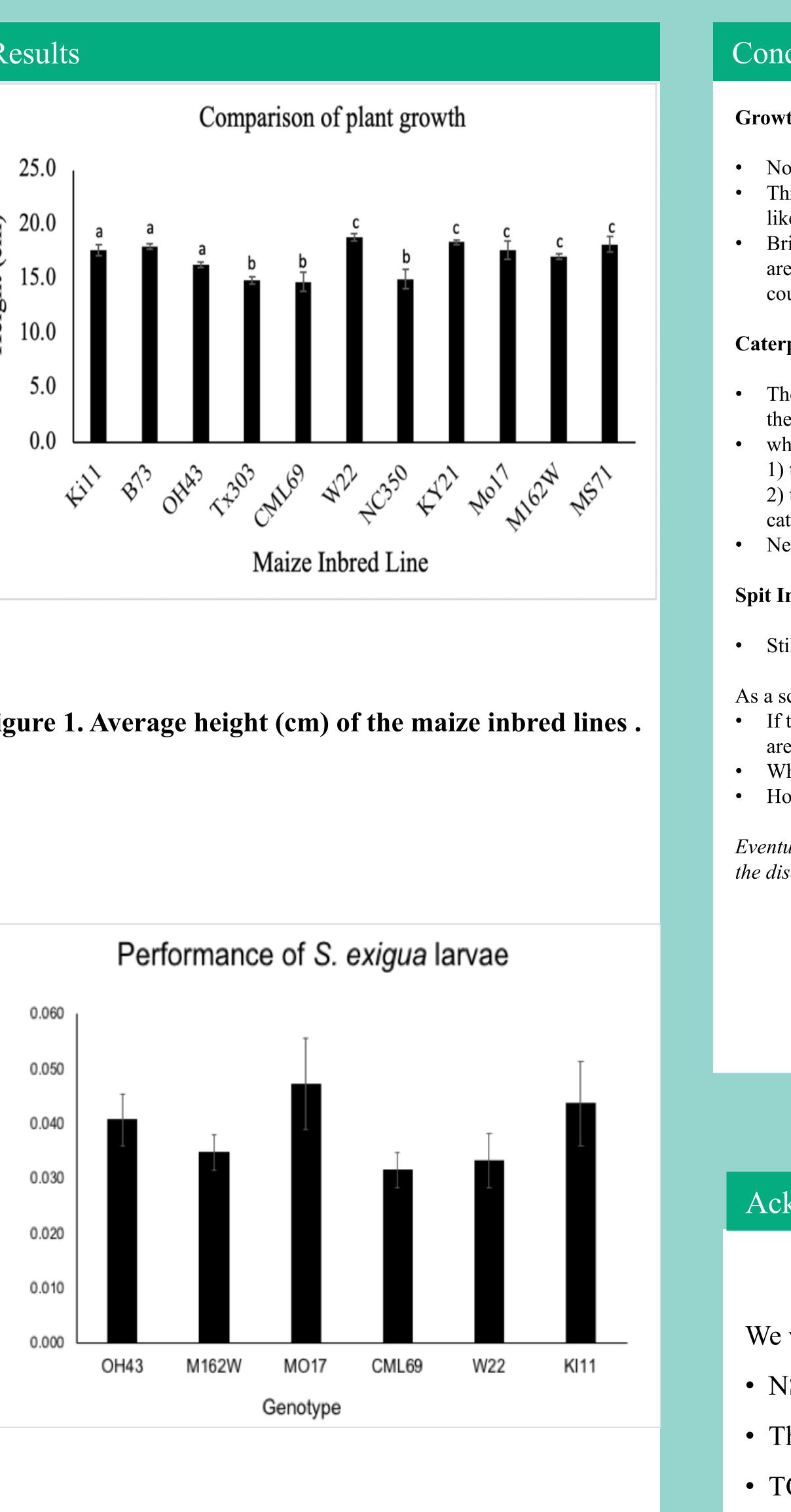
- There is significant genetic diversity among the maize (*Zea mays*) inbred maize lines. Genetic variation between any two inbred lines is greater than genetic variation between humans and chimpanzees.
- Given the economic importance of maize, understanding its defense responses to biotic stressors is vital
- Jasmonic acid (JA) is a phytohormone known to increase in maize plants after herbivore attack
- JA and Isoleucine are combined by JAR1 to produce JA-Ile, which leads to a series of defense reactions
- Differences in JA levels is indicative of differences in JA-Ile, and therefore differences in plant defenses


Objectives/Hypothesis

Objectives

- Assess the variability in JA and JA-Ile levels in the different maize lines collected from various agroecological conditions
- Assess natural variability in JA-mediated defense metabolite accumulation among the maize inbred lines.

Hypothesis


• *Maize inbred lines from different geographical regions exhibit* significant differences in the accumulation of herbivore-induced JA, JA-Ile and defense metabolites.

Variability in herbivore-induced jasmonate levels across the maize inbred lines from different geographical regions

Harish Rajagopal, Aapti Patel, and Melkamu G. Woldemariam The College of New Jersey, 2000 Pennington Road, Ewing Township, NJ, 08618; Department of Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033; Boyce Thompson Institute, Ithaca, NY, 14853

Methodology	R
Growth Rate Experiment:	
 Grow 12 maize inbred lines (n=21) in the greenhouse for 3 weeks Compare the growth rate of the inbred lines by measuring the height of the plants (from the crown to the whorl) Importance When plants highly defensive – growth rate typically slower When plants less defensive – growth rate typically faster 	Height (cm)
 Caterpillar Performance Grow 12 maize inbred lines (n=21) in the greenhouse for 3 weeks Weigh 5d-old<i>S. exigua</i> neonates and place them onto individual plants of each inbred line Place the plants and the caterpillars into perforated breadbag and allow caterpillars to feed freely for 5 days Weigh the caterpillar on day 5 	
 Spit Induction/Jasmonic Acid Extraction Grow wildtype maize B73 inbred line in the greenhouse for 3 weeks Place neonates (5d) of <i>S. exigua</i> on the plants and allow them to feed for 5d. Collect oral secretions from the caterpillars by applying gentle suction pressure on the mandibles of the caterpillars 	Fig
• Dilute the oral secretion 50x (in water; v/v) before use	
	gain (g)
B73 Plants	mass
Grown for 14 days	Caterpillar
BAW caterpillars released	Cat
Over the next 3 days	
Oral secretions harvested	Fig
Jasmonic Acid Extraction	eac N=

gure 2. Mean caterpillar (S. exigua) performance for ch genotype. OH43: N=14, M162W: N=15, MO17: =15, CML69: N=17, W22: N=15, KI11: N=14

Conclusion/Future Direction

Growth Rate Experiment

• No significant difference in plant growth between all maize inbred lines • Three distinct groups significantly different from each other but can likely be attributed to small sample size

• Bringing all these lines together in the same greenhouse environment that are normally used to growing in drastically different environments – could also account for these differences

Caterpillar Performance

There is no statistically significant difference between the genotypes in the terms of caterpillar mass gain

• what does that mean?

1) there isn't any difference in the defense levels or

2) there is a difference, but we are using specialist caterpillars and these caterpillars are not affected by small differences in defense metabolites • Next step: do an experiment in which we use a generalist herbivore

Spit Induction/Jasmonic Acid Extraction

• Still waiting on spectrometry results

As a scientist, we need to ask ourselves:

• If there are difference in defense metabolite levels, which metabolites are different exactly?

• What are the biological differences?

• How do each component of these metabolites affect the caterpillars?

Eventually, understanding the answer to each of these questions may lead to the discovery of a natural insecticide that can be used on maize.

Acknowledgements

We would like to acknowledge:

• NSF and USDA/NIFA for funding

• The College of New Jersey

• TCNJ Department of Biology

Boyce Thompson Institute