
ENHANCE MCCREIGHT
ALGORITHM TO BUILD WORDLIST
FOR HASHCAT
BY JUSTIN PABON

BACKGROUND

• Passwords are commonly stored as hashed values on server

• Leaked Hashed Passwords can be attacked by Hashcat

• Hashcat’s attack mode:
• Dictionary attack
• Combinator attack
• Brute-force attack and Mask attack
• Hybrid attack
• Rule-based attack
• Toggle-case attack

BACKGROUND (CONT’D)

• In previous research, our group used Hashcat to attack 1,000,000+ leaked passwords, about
89% of them were cracked. It has been difficult to increase the ratio.

• In the previous research, we find most cracked passwords use some words from wordlist;
brute-force cracked very few passwords.

• We wonder:
• Would an enhanced wordlist increase the cracking ratio?

• Ideally, this wordlist should be
• Comprehensive: General enough to be applied to as many passwords as possible

• Tight: We don’t want a wordlist that is too exhaustive to go through.

OPTIONS FOR WORDLIST

Mac dictionary

• 90,000 out of
235,886 used

Rockyou list

• 6 millions out of
13 millions used

Traditional
dictionaries

• Do not include
commonly used
strings.

• E.g. “qwerty”,
“iloveyou”,
“hahaha”,
“test1234”

HOW DO WE FIND THESE COMMON SUBSTRINGS?

• Suffix Array
• The tree data structure made to store every suffix of a given string.

• Generalized Suffix Tree

• An implementation of a suffix tree that supports multiple strings.

• Can be built using McCreight’s Algorithm.

SUFFIX TREES

a

aba$ aba$

$

$ ba

$

$
aba$

6:6

4:7 4:7

7:7

7:7
5:6

7:7

7:7
4:7

S = abaaba$
1234567

S = abaaba$
1234567

GENERALIZED SUFFIX TREES

t

&

&

ag$gat&

#tag$gat&

a

g$gat&

t

#tag$gat& &

at#tag$gat&

at&

$gat&

$gat&

#tag$gat&

S = att#tag$gat&

S is the concatenation of three
strings: att, tag and gat.
Each string is appended with a
unique terminating character to
separate the strings.

g

GENERALIZED SUFFIX TREES (CONT’D)

t

&

&

ag$
#

a

g$

t

#
&

at#

at&

$

$

#

S = att#tag$gat&

g

We remove suffixes after
every terminating
character. This way, each
path in the tree represents
the suffix of a specific
string.

GOALS

• Modify McCreight’s Algorithm to support
millions of passwords.

• Collect information from our tree by
traversing through it and creating a new
wordlist of the most common substrings.

• Attack passwords using our new wordlist
with the hope of increasing the ratio.

FIRST MODIFICATION:
TERMINATING
CHARACTER

• The original code generates a unique
terminating character for each string
using Unicode.

• Unicode cannot create enough unique
terminating characters for millions of
passwords.

• Modification: Return the same Unicode
character for every password. We’ll
change them later to distinguish each
one.

MCCREIGHT
ALGORITHM

(PSEUDOCODE)

• Input: Text T[0…n], T[n] = $

• Output: suffix tree of T: root, child, parent, depth, start, slink

1. create new node root; depth(root) ← 0; slink(root) ← root

2. u ← root; d ← 0 // (u, d) is the active locus

3. for i ← 0 to n do // insert suffix Ti

4. while d = depth(u) and child(u, T[i + d]) 6= ⊥ do

5. u ← child(u, T[i + d]); d ← d + 1

6. while d < depth(u) and T[start(u) + d] = T[i + d] do d ← d + 1

7. if d < depth(u) then // (u, d) is in the middle of an edge

8. u ← CreateNode(u, d)

9. CreateLeaf(i, u)

10. if slink(u) = ⊥ then ComputeSlink(u)

11. u ← slink(u); d ← d − 1

Time Complexity: O(m)

MCCREIGHT’S ALGORITHM (THE CODE)

CREATE LEAF (MODIFIED)

• All child nodes are stored in a parent
node’s set as transition links.

• Each entry in the set uses a character as
a unique key to access a child node.

• To make each terminating character
unique, we append the character’s
index value (idx) to the terminating
character.

SECOND MODIFICATION: NON-RECURSIVE
TRAVERSAL

• Each node has a set called: “unvisited_links”. It is initialized to be empty when the node is
created.

• The function starts from the root and then traverses down until reaching a leaf. When it moves
down into a new node, we copy its transition_links set to unvisited_links set.

• If a node has an empty unvisited_links set, then it must be a leaf or every child of this node is
already visited.

• Pop the node out of its parent’s univisited_links set. Then move up to the parent node and add
the last visited node’s number of leaves to the parent node’s.

• Repeat this process until the unvisited_links set of root is empty.

TRAVERSAL CODE

TEST CASE W/ A SMALL DATA SET (1/2)

t

&

&

ag$
#

a

g$

t

&

at#

at&

$

$

#

S = att#tag$gat&

g

TEST CASE W/ A SMALL DATA SET (2/2)

S = xabxa#babxba$

RESULTS

1 Million Passwords:

• Traversal Time: 14 minutes
20.987 seconds

• Top 3 Substrings:
• “123”; 65,936 leaves
• “234”; 22,479 leaves
• “198”; 22,245 leaves

• File Size: 14.1MB,
1,254,353 lines

3 Million Passwords:

• Traversal Time: 4 hours 44
minutes 47.5391 seconds

• Top 3 Substrings:
• “123”; 160,740 leaves
• “200”; 61,349 leaves
• “198”; 60,246 leaves

• File Size: 41MB,
3,591,122 lines

5 Million Passwords:

• Traversal Time: 15 hours
43 minutes 44.3862
seconds

• Top 3 Substrings:
• “123”; 242,532 leaves
• “198”; 101,108 leaves
• “200”; 100,899 leaves

• File Size: 68.5MB,
5,987,239 lines

FUTURE WORK

• Further data processing will need to be done on these results.

• How many passwords have a given substring?

• Two child leaves could be suffixes for the same password or different passwords.

• More passwords with the same suffix à higher rank in the dictionary.

QUESTIONS?

• References:

• https://www.cs.helsinki.fi/u/tpkarkka/opet
us/13s/spa/lecture10-2x4.pdf

• McCreight, Edward M. "A space-economical
suffix tree construction algorithm." - ACM,
1976.
http://libeccio.di.unisa.it/TdP/suffix.pdf

• https://pypi.org/project/suffix-trees/

• https://www.geeksforgeeks.org/generalize
d-suffix-tree-1/

https://www.cs.helsinki.fi/u/tpkarkka/opetus/13s/spa/lecture10-2x4.pdf
http://libeccio.di.unisa.it/TdP/suffix.pdf
https://pypi.org/project/suffix-trees/
https://www.geeksforgeeks.org/generalized-suffix-tree-1/

