
An Analysis of the Level Ancestor 
Problem
Carolyne Holmes & Matthew Mabrey



The Level Ancestor 
Problem

➢ In a tree T with n nodes, answer a query of the 
form LA(v, d)
○ Query aims to find the ancestor of the node v that 

is at a depth of d from the root
○ This can be done is O(n) time by tracing the path 

from the target node to the root until reaching 
depth d, but it is impractical for larger trees

➢ Preprocessing for the algorithms aims to store 
the tree in data structures so that queries can 
be completed more efficiently



Applications

➢ Level ancestor implementations can be used to aid in many other algorithms
○ Least Common Ancestor

■ Used in string processing, computational biology, and complex distributed 
systems, among many other applications

○ Space-Efficient Ordinal Trees
■ XML document representation for XPath queries

○ Range-Aggregate Queries on trees



Our Project

➢ We aimed to code (in C) the algorithms outlined in different papers and 
compare the experimental time for tree preprocessing and querying

➢ We examined eight algorithms for static binary trees
➢ Random Tree Generation:

○ Trees were represented in Euler format that follows a Depth-First Search 
preorder
■ Binary Representation: 

● 1 represents moving down in the tree
● 0 represents moving upwards in the tree
● Example: 11101000 

○ Euler Representation= 154243451
○ Generated via split-tree method

■ Creates trees where both the average node depth and tree depth are 
logarithmically bound

■ Allows for easy construction of Euler representation and skewed trees



The Algorithms ➢ Table Algorithm:
○ Preprocessing = O(n2), Query = O(1)
○ Uses a 2D-array to store the list of all ancestors 

of each node derived by a traversal in DFS order
➢ Jump-Pointer Algorithm:

○ Preprocessing = O(nlogn), Query = O(logn)
○ Uses pointers from each node to its ancestors, 

allowing for the distance to the ancestor at depth 
d to be traversed in jumps of at least half the 
remaining distance to the ancestor

➢ Ladder Algorithm:
○ Preprocessing = O(n), Query = O(logn)
○ Perform a longest path decomposition on the 

tree and extends the paths to reach the root so 
that a node at height h can be queried for 
ancestors of at least height 2h

➢ Jump Ladder:
○ Preprocessing = O(nlogn), Query = O(1)
○ Combines the Jump-Pointer and Ladder 

Algorithms
○ First jumps up the tree, then uses the ladder to 

move up towards the ancestor node



The Algorithms
➢ Macro-Micro Algorithm:

○ Preprocessing = O(n), Query = O(1)
○ Uses the other four algorithms
○ Nodes are divided into macro and micro 

subtrees based on their weight
○ Macro nodes have use of the jump-pointer 

method
○ Micro trees use table algorithm

➢ Menghani-Matani (Google-Facebook) 
Algorithm:
○ Preprocessing = O(n), Query = O(logn)
○ Perform a pre-order traversal of the tree 

where each node is given a integer tag 
starting at 1 for the root

○ Each node, in increasing tag value, is stored 
in a specific dynamic array depending on its 
depth

○ Find the largest node label less than the label 
of node v in the array for depth d and return 
the pointer for that label



The Algorithms ➢ Torben Hagerup:
○ Preprocessing = O(n), Query = O(1)
○ Uses the find-smaller method to create a 

2D structure of peaks and valleys
○ Finds the deepest valley nearest to the 

node v and then uses the ladder method 
until reaching the height of the given 
depth d

○ Then the node to the right of this height in 
the 2D structure is selected

➢ Ben-Amran:
○ Preprocessing = O(nlogn), Query = O(n)
○ Uses the find-smaller methods which 

takes an array A, an index x, and an 
integer y

○ Finds an index u > x such that Au ≤ y



Results

➢ Multiple trials were run with varying numbers of nodes from 100,000 to 1 billion 
and 100 million queries per tree

➢ Tests were run on the TCNJ cluster as submitted job scripts to an AMD EPYC2 
processor with 512 GB of memory 

➢ Preprocessing:
○ Fastest - Google-Facebook Algorithm
○ Slowest - Table Algorithm

➢ Querying:
○ Fastest - Table Algorithm
○ Slowest - Torben Hagerup & Ladder Algorithms







Results

➢ In addition to time taken, we also examined memory usage for each algorithm
○ As expected, the Table Algorithm uses up the most memory space



Future Research ➢ Examine ways to improve upon the 
existing algorithms
○ Could incorporate more assembly 

code that speeds up processing 
time

➢ Incorporate dynamic algorithms that 
allow for adding leaves to trees
○ Alstrup & Holm Algorithm

■ Implements an improved 
version of the macro-micro 
algorithm

○ Dietz Algorithm
○ Adjust static algorithms to allow for 

dynamic trees



References

Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dynamic trees. In Automata, 
Languages and Programming, 27th International Colloquium, ICALP 2000, number 1853 in LNCS, pages 73–84. Springer 
Verlag, 2000.

Amir M. Ben-Amram. The euler path to static level-ancestors. CoRR, abs/0909.1030, 2009.

Michael A. Bender and Mart ́ın Farach-Colton. The level ancestor problem simplified. Theor. Comput. Sci., 321(1):5–12, 
June 2004.

Paul Dietz. Finding level-ancestors in dynamic trees. In Frank Dehne, Jrg-Rdiger Sack, and Nicola Santoro, editors, 
Algorithms and Data Structures, volume 519 of Lecture Notes in Computer Science, pages 32–40. Springer Berlin / 
Heidelberg, 1991. 10.1007/BFb0028247.

Omer Berkman and Uzi Vishkin. Finding level-ancestors in trees. Journal of Computer and System Sciences, 48(2):214 – 
230, 1994.

Gaurav Menghani and Dhruv Matani. A simple solution to the level ancestor problem. 2019. Retrieved from 
https://arxiv.org/abs/1903.01387

Torben Hagerup. Still simpler static level ancestors. CoRR, abs/2005.11188, 2020.

https://arxiv.org/abs/1903.01387

