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The Level Ancestor 
Problem

➢ In a tree T with n nodes, answer a query of the 
form LA(v, d)
○ Query aims to find the ancestor of the node v that 

is at a depth of d from the root
○ This can be done is O(n) time by tracing the path 

from the target node to the root until reaching 
depth d, but it is impractical for larger trees

➢ Preprocessing for the algorithms aims to store 
the tree in data structures so that queries can 
be completed more efficiently



Applications

➢ Level ancestor implementations can be used to aid in many other algorithms
○ Least Common Ancestor

■ Used in string processing, computational biology, and complex distributed 
systems, among many other applications

○ Space-Efficient Ordinal Trees
■ XML document representation for XPath queries

○ Range-Aggregate Queries on trees



Our Project

➢ We aimed to code (in C) the algorithms outlined in different papers and 
compare the experimental time for tree preprocessing and querying

➢ We examined eight algorithms for static binary trees
➢ Random Tree Generation:

○ Trees were represented in Euler format that follows a Depth-First Search 
preorder
■ Binary Representation: 

● 1 represents moving down in the tree
● 0 represents moving upwards in the tree
● Example: 11101000 

○ Euler Representation= 154243451
○ Generated via split-tree method

■ Creates trees where both the average node depth and tree depth are 
logarithmically bound

■ Allows for easy construction of Euler representation and skewed trees



The Algorithms ➢ Table Algorithm:
○ Preprocessing = O(n2), Query = O(1)
○ Uses a 2D-array to store the list of all ancestors 

of each node derived by a traversal in DFS order
➢ Jump-Pointer Algorithm:

○ Preprocessing = O(nlogn), Query = O(logn)
○ Uses pointers from each node to its ancestors, 

allowing for the distance to the ancestor at depth 
d to be traversed in jumps of at least half the 
remaining distance to the ancestor

➢ Ladder Algorithm:
○ Preprocessing = O(n), Query = O(logn)
○ Perform a longest path decomposition on the 

tree and extends the paths to reach the root so 
that a node at height h can be queried for 
ancestors of at least height 2h

➢ Jump Ladder:
○ Preprocessing = O(nlogn), Query = O(1)
○ Combines the Jump-Pointer and Ladder 

Algorithms
○ First jumps up the tree, then uses the ladder to 

move up towards the ancestor node



The Algorithms
➢ Macro-Micro Algorithm:

○ Preprocessing = O(n), Query = O(1)
○ Uses the other four algorithms
○ Nodes are divided into macro and micro 

subtrees based on their weight
○ Macro nodes have use of the jump-pointer 

method
○ Micro trees use table algorithm

➢ Menghani-Matani (Google-Facebook) 
Algorithm:
○ Preprocessing = O(n), Query = O(logn)
○ Perform a pre-order traversal of the tree 

where each node is given a integer tag 
starting at 1 for the root

○ Each node, in increasing tag value, is stored 
in a specific dynamic array depending on its 
depth

○ Find the largest node label less than the label 
of node v in the array for depth d and return 
the pointer for that label



The Algorithms ➢ Torben Hagerup:
○ Preprocessing = O(n), Query = O(1)
○ Uses the find-smaller method to create a 

2D structure of peaks and valleys
○ Finds the deepest valley nearest to the 

node v and then uses the ladder method 
until reaching the height of the given 
depth d

○ Then the node to the right of this height in 
the 2D structure is selected

➢ Ben-Amran:
○ Preprocessing = O(nlogn), Query = O(n)
○ Uses the find-smaller methods which 

takes an array A, an index x, and an 
integer y

○ Finds an index u > x such that Au ≤ y



Results

➢ Multiple trials were run with varying numbers of nodes from 100,000 to 1 billion 
and 100 million queries per tree

➢ Tests were run on the TCNJ cluster as submitted job scripts to an AMD EPYC2 
processor with 512 GB of memory 

➢ Preprocessing:
○ Fastest - Google-Facebook Algorithm
○ Slowest - Table Algorithm

➢ Querying:
○ Fastest - Table Algorithm
○ Slowest - Torben Hagerup & Ladder Algorithms







Results

➢ In addition to time taken, we also examined memory usage for each algorithm
○ As expected, the Table Algorithm uses up the most memory space



Future Research ➢ Examine ways to improve upon the 
existing algorithms
○ Could incorporate more assembly 

code that speeds up processing 
time

➢ Incorporate dynamic algorithms that 
allow for adding leaves to trees
○ Alstrup & Holm Algorithm

■ Implements an improved 
version of the macro-micro 
algorithm

○ Dietz Algorithm
○ Adjust static algorithms to allow for 

dynamic trees
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